
Ecology and Evolution. 2023;13:e10226.	 ﻿	   | 1 of 37
https://doi.org/10.1002/ece3.10226

www.ecolevol.org

Received: 20 December 2022  | Revised: 3 June 2023  | Accepted: 7 June 2023
DOI: 10.1002/ece3.10226  

R E S E A R C H  A R T I C L E

Surface and subsurface oceanographic features drive forage 
fish distributions and aggregations: Implications for prey 
availability to top predators in the US Northeast Shelf 
ecosystem

Chandra Goetsch1  |   Julia Gulka1 |   Kevin D. Friedland2  |   Arliss J. Winship3,4 |   
Jeff Clerc5 |   Andrew Gilbert1 |   Holly F. Goyert3,4 |   Iain J. Stenhouse1 |    
Kathryn A. Williams1 |   Julia R. Willmott5 |   Melinda L. Rekdahl6 |   Howard C. Rosenbaum6 |    
Evan M. Adams1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 Biodiversity Research Institure. Ecology and Evolution published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government 
employees and their work is in the public domain in the USA.

1Biodiversity Research Institute, Portland, 
Maine, USA
2Northeast Fisheries Science Center, 
Narragansett, Rhode Island, USA
3CSS, Inc., Fairfax, Virginia, USA
4National Centers for Coastal Ocean 
Science, NOAA, Silver Spring, Maryland, 
USA
5Normandeau Associates, Gainesville, 
Florida, USA
6Wildlife Conservation Society, Ocean 
Giants Program, Bronx Zoo, Bronx, New 
York, USA

Correspondence
Chandra Goetsch, Biodiversity Research 
Institute, Portland, ME, USA.
Email: chandra.goetsch@noaa.gov

Funding information
Maryland Department of Natural 
Resources; Maryland Energy 
Administration, Grant/Award Number: 
14-13-1653 MEA; New York State Energy 
Research and Development Authority, 
Grant/Award Number: 143064; U.S. 
Department of Energy, Grant/Award 
Number: DE-EE0005362

Abstract
Forage fishes are a critical food web link in marine ecosystems, aggregating in a hi-
erarchical patch structure over multiple spatial and temporal scales. Surface-level 
forage fish aggregations (FFAs) represent a concentrated source of prey available to 
surface- and shallow-foraging marine predators. Existing survey and analysis methods 
are often imperfect for studying forage fishes at scales appropriate to foraging preda-
tors, making it difficult to quantify predator–prey interactions. In many cases, gen-
eral distributions of forage fish species are known; however, these may not represent 
surface-level prey availability to predators. Likewise, we lack an understanding of the 
oceanographic drivers of spatial patterns of prey aggregation and availability or forage 
fish community patterns. Specifically, we applied Bayesian joint species distribution 
models to bottom trawl survey data to assess species- and community-level forage 
fish distribution patterns across the US Northeast Continental Shelf (NES) ecosystem. 
Aerial digital surveys gathered data on surface FFAs at two project sites within the 
NES, which we used in a spatially explicit hierarchical Bayesian model to estimate the 
abundance and size of surface FFAs. We used these models to examine the oceano-
graphic drivers of forage fish distributions and aggregations. Our results suggest that, 
in the NES, regions of high community species richness are spatially consistent with 
regions of high surface FFA abundance. Bathymetric depth drove both patterns, while 
subsurface features, such as mixed layer depth, primarily influenced aggregation be-
havior and surface features, such as sea surface temperature, sub-mesoscale eddies, 
and fronts influenced forage fish diversity. In combination, these models help quantify 
the availability of forage fishes to marine predators and represent a novel application 
of spatial models to aerial digital survey data.
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1  |  INTRODUC TION

Prey availability, a function of the density of prey resources and their 
accessibility to predators, is an important factor affecting the abun-
dance and distribution of marine species (Frederiksen et al., 2006). 
Marine prey species are hierarchically organized over multiple 
spatial and temporal scales with individuals grouping to form co-
hesive aggregations (e.g., swarms, schools, or shoals) at fine scales 
(<1 km) and aggregations forming distinct organizational patterns at 
submesoscales (1–10 km) and mesoscales (10–1000 km) across the 
broader regional seascape (spatial extents >10,000 km2; Fauchald 
et al., 2000; Russell et al., 1992; Steele, 1978). Frequently, marine 
prey distributions are described at coarser mesoscale resolutions, 
simplified as general occupancy (i.e., presence or absence) and/or 
integrated over the water column (Arkema et al., 2006; Ruckelshaus 
et al.,  2008). These generalizations discount the patchy nature of 
prey availability at smaller scales, which many marine predators 
target within the broader prey distribution to increase foraging 
efficiency and success (Fauchald et al.,  2000; Wellenreuther & 
Connell, 2002). Thus, while the broad-scale distribution of prey may 
set the limits of marine predator distribution, the timing and spatial 
patterns of prey aggregations determine realized prey availability, 
impacting the fine and submesoscale habitat use of predators.

Small, schooling pelagic forage fishes are a critical prey resource 
within marine food webs, linking primary production and zooplankton 
to upper trophic level predators, such as seabirds, seals, cetaceans, 
piscivorous fishes, and squids (Cury et al., 2000; Pikitch et al., 2012). 
Forage fishes form large, dense aggregations in a hierarchical patch 
structure that varies over fine spatial and temporal scales (Freon & 
Misund, 1999; Pitcher, 1986). Although other groups such as squids 
and juvenile stages of some piscivorous fishes (e.g., age 0–1 ground-
fish), also exhibit schooling behavior and can serve a similar functional 
role, small pelagic forage fishes remain in this role throughout their life 
history and are the primary forage species in many marine ecosystems 
(Rountos, 2016). The formation and distribution of forage fish aggre-
gations (FFAs) are driven by a combination of their responses to the 
physical abiotic environment (e.g., physiological thermal constraints) 
and responses based on biotic interactions (e.g., foraging, predator 
avoidance, and spawning; Genin, 2004; Pitcher, 1986). Surface-level 
FFAs, in particular, are important for surface or shallow-foraging 
predators (e.g., plunge-diving or dipping seabirds; Fauchald, 2009) and 
predators that trap aggregated forage fishes between themselves and 
the surface as a foraging strategy (e.g., cetaceans, sharks, and pursuit-
diving seabirds), which often form multispecies feeding associations 
for efficient exploitation (Thiebault et al., 2016).

Differences in survey and sampling methods between forage fishes 
and their predators make it challenging to obtain prey availability data 

at behaviorally relevant scales to discern predator–prey relationships, 
resulting in a fundamental scale mismatch between predator and prey 
data (Benoit-Bird et al., 2013; Fauchald et al., 2000). For instance, bot-
tom trawl surveys are routinely used in fisheries stock assessments 
to discern abundance and distribution of multiple fish species across 
broad seascape areas (Despres-Patanjo et al.,  1988). Bottom trawl 
surveys are not optimal for sampling low to mid-trophic level pelagic 
forage fishes, since the gear has species- and size-dependent selec-
tivity, and in deeper waters may only reliably sample pelagic, school-
ing forage fishes upon deployment and recovery as the net moves 
vertically through the water column. Nonetheless, while forage fishes 
are primarily mid-water species, they do use the full water column 
over the continental shelf via several mechanisms (i.e., diel vertical 
migration, predator avoidance, spawning, and over-wintering; Freon 
& Misund, 1999). In the Northeast U.S. Continental Shelf ecosystem 
(NES), forage fishes are routinely captured in bottom trawls and the 
distribution of these captures is systematic, likely representing true 
broadscale distribution tendencies (Friedland et al.,  2023; Roberts 
et al., 2022; Suca, Deroba, et al., 2021). However, bottom trawl sur-
veys are ill-suited for monitoring the distribution of surface-level FFAs 
on which many predators rely. Large-scale active acoustic surveys are 
widely used for conducting abundance (i.e., biomass) surveys of forage 
fishes (Jech & McQuinn, 2016; McQuinn, 2009). Yet, acoustic surveys 
for assessing FFA characteristics specifically, including horizontal and 
vertical distribution, school density, and predator–prey interactions 
(Lucca & Warren, 2019; Thayne et al., 2019) are often conducted at 
small spatial scopes, and seascape-level patterns in the distributions 
of FFAs are largely unknown.

Despite the importance of comparing predator foraging suc-
cess and behavior to prey distributions at interaction-level scales 
(Fauchald, 2009; Russell et al., 1992), forage fishes are frequently 
compared with predators at much coarser scales or omitted from 
analyses of predator distributions entirely due to data paucity, re-
sulting in, at best, unexplained variance in trophic responses or, at 
worst, an inability to detect meaningful trophic relationships (Hunt 
& Schneider, 1987; Levin, 1992). These challenges have prevented 
clear tests of predator–prey hypotheses at relevant scales, and 
many studies have not found strong relationships between forage 
fish distributions and marine predators (Fauchald, 2009; Grémillet 
et al., 2008; Russell et al., 1992; Torres et al., 2008).

Forage fishes are often characterized by asynchronous “boom 
and bust” population cycles, resulting in high temporal variability 
in species dominance (Schwartzlose et al., 1999). In addition, for-
age fishes form large, multispecies aggregations, which vary spatio-
temporally across scales (Cury et al., 2000; Engelhard et al., 2014). 
Consequently, many marine predators are not dependent on a single 
forage fish species, instead favoring generalist feeding strategies 
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or engaging in prey-switching behavior (Cury et al., 2000). In fact, 
local density, species composition, and spatial availability of forage 
fishes generally are key factors in the foraging and reproductive suc-
cess of marine predators (Benoit-Bird et al., 2013; Davoren, 2013). 
Community-level measures of forage fish distribution or abundance 
may be an indicator of realized prey availability for opportunistic 
generalist predators (Koehn et al.,  2016). Understanding forage 
fish community dynamics and the oceanographic features driving 
these patterns may be more applicable to predator–prey studies 
than examining these patterns at the individual prey species level. 
Advances in joint species distribution modeling (JSDM) allow for the 
estimation of community-level distributions, environmental niches, 
and species associations (Ovaskainen & Abrego, 2020; Ovaskainen 
et al., 2017; Roberts et al., 2022; Warton et al., 2015), which may be 
more relevant in some cases to marine predator–prey relationships 
than the results of single-species habitat modeling.

Aircraft-based aerial digital video/photographic surveys, designed 
to target seabirds, marine mammals, and other marine predators, are 
a technological advancement that enables the reliable detection of 
surface FFAs across regional seascapes (Buckland et al., 2012; Taylor 
et al., 2014). Observations of surface FFAs from digital aerial surveys 
allow for investigation of processes driving realized prey availabil-
ity, as FFAs integrate both interaction-level scales (i.e., prey patch 
distribution) and community-level dynamics (i.e., aggregations can 
represent multiple species). In the absence of FFA data, many stud-
ies of marine predator distributions rely on oceanographic features, 
such as bathymetry, sea surface temperature (SST), and chlorophyll 
concentration, as proxies for prey availability (Becker et al., 2016; 
Palacios et al., 2014; Torres et al.,  2008), assuming these features 
adequately represent prey patterns. For example, some seabird spe-
cies have been associated with frontal features, which have been 
interpreted as an aggregating mechanism for prey (Scales, Miller, 
Embling, et al., 2014). While some of these oceanographic features 
are known to play a role in the general distribution of forage fish 
species (Friedland et al., 2019; Suca, Deroba, et al., 2021), we lack 
an understanding of the physical and biological mechanisms driving 
the formation and distribution of surface FFAs (Cox et al., 2018; Peck 
et al., 2021). In addition, data on relevant oceanographic variables, 
such as subsurface features, are often lacking at appropriate spatio-
temporal scales for modeling dynamic, ephemeral processes such as 
aggregation formation, leading to an incomplete understanding of 
the oceanographic processes driving forage fish distribution and ag-
gregation (Brodie et al., 2018; Mannocci et al., 2017).

Data from aerial digital surveys offer a novel opportunity to as-
sess the oceanographic processes driving the abundance and size of 
FFAs and whether those differ from the drivers of forage fish occur-
rence distributions. Surface FFAs are a product of forage fish pres-
ence and a behavioral response. Thus, distributions of FFAs are not 
necessarily driven by the same environmental features as broadscale 
occurrence. Static habitat features (i.e., bathymetric depth and bot-
tom topography) can interact with dynamic ocean processes, cre-
ating conditions that promote the formation of FFAs (Genin, 2004; 
Holland et al., 2021). For example, zooplankton in coastal waters can 
accumulate via currents and high chlorophyll-a along productivity 

fronts; shallow topography then prevents downward migration of 
zooplankton, driving increased surface FFAs which forage on the 
concentrated plankton (Holland et al.,  2021). Subsurface dynamic 
processes, such as stratification, also influence aggregating mecha-
nisms via concentrating nutrients, subsurface productivity, and zoo-
plankton (Genin, 2004). Abrupt changes in bottom topography can 
interact with water column stratification to drive FFAs to the surface 
(Cox et al., 2018).

We used models of the forage fish community distribution 
alongside independent models of FFA distribution to address the 
following questions:

1.	 Do broadscale distributions of the forage fish community in the 
NES ecosystem, as determined from long-term bottom trawl 
surveys, demonstrate relationships to patterns of surface prey 
availability, as determined from aerial digital surveys of surface 
FFAs?

2.	 Which oceanographic processes are driving the spatial distri-
butions of forage fishes at these differing organizational scales 
(broadscale occupancy distribution vs. surface FFA distribution)?

3.	 Where are regions of high realized prey availability?

To examine broad patterns in forage fish community dynamics, 
we modeled the joint distribution of 15 surface-aggregating forage 
fish species from the NES in autumn and spring. We used digital 
aerial survey data of surface FFAs from the New York and Mid-
Atlantic Bights to model the spatial distribution of FFA abundance 
and size by season. To determine which oceanographic processes 
influence prey availability and broad-scale forage fish distribution, 
we included a set of environmental covariates representing three 
categories: static physical habitat (i.e., bathymetric measures), dy-
namic surface processes (i.e., temperature and chlorophyll fronts, 
eddies), and dynamic subsurface processes (i.e., stratification). 
We predicted that different environmental processes would drive 
forage fish distributions and surface FFAs with dynamic features 
more influential to FFAs. We found that multiple models describ-
ing forage fish distributions at community and aggregation levels 
can provide a more complete picture of the conditions driving the 
broadscale distribution and aggregation behavior of forage fishes, 
and, thus, prey availability for surface- and shallow-foraging marine 
predators.

2  |  MATERIAL S AND METHODS

2.1  |  Study region

This study has multiple nested regions, the largest being the NES, a 
well-studied marine ecosystem (Sherman & Skjoldal, 2002), encom-
passing the shelf waters along the western boundary of the North 
Atlantic Ocean from Cape Hatteras, North Carolina to the Gulf of 
Maine (Figure 1a). Within the NES, two study areas, the New York 
Bight (Figure 1b; Robinson Willmott et al., 2021) and the Mid-Atlantic 
Bight (Figure 1c; Williams et al., 2015) were aerially surveyed with 
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high-resolution digital cameras to estimate spatial distributions of 
marine animals.

2.2  |  Data description

2.2.1  |  Bottom trawl surveys—forage fish species/
community data

The NOAA Northeast Fisheries Science Center has conducted a 
biannual fisheries-independent bottom trawl survey across the 
NES ecosystem for over 50 years (1968–2019; Grosslein,  1968, 

Appendix 1: Section 1). Bottom trawl surveys are conducted in the 
boreal autumn and spring, employing a random stratified survey de-
sign with strata based primarily on depth and secondarily on latitude 
(Despres-Patanjo et al., 1988). Within strata, tow locations are as-
signed randomly prior to each seasonal survey. A minimum of two 
locations are sampled per strata, totaling ~300 locations per sea-
son. The trawl net has a 12.5 mm mesh liner at the codend to re-
tain juvenile and small-bodied fishes. We used tow data with catch 
identification at the species level for 15 pelagic, schooling forage 
fishes (Table 1). Data were standardized using calibration factors to 
account for vessel and gear changes in the surveys during the time 
series (Miller et al., 2010). However, the bottom trawl gear was not 

F I G U R E  1 (a) US Northeast Continental Shelf (NES) study area, (b) New York (NY) Bight aerial digital survey transects, and (c) Mid-
Atlantic Bight aerial digital survey transects. Model prediction extents are depicted via blue (NES) and orange (FFA) outlines. Relevant 
geographic features are labeled (see legend). FFA, forage fish aggregation; ME, Maine; OPA, offshore planning area; WEA, wind energy area.
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    |  5 of 37GOETSCH et al.

designed to capture pelagic forage fishes; thus, even after standardi-
zation for temporal gear changes, the abundance/biomass data may 
not be fully representative of forage fishes. Therefore, we trans-
formed raw abundance/biomass per tow to binary occupancy data 
(presence/absence) for distribution modeling.

2.2.2  |  Aerial digital surveys—forage fish 
aggregation data

High-resolution aerial digital surveys were conducted as baseline 
ecological studies of designated offshore planning areas (OPAs; 
Figure  1b,c) for wind energy development and were designed 
to estimate patterns of above-water and surface-level fauna. 
Detectability of submerged FFAs in these surveys varies due to 
water turbidity and weather conditions with the estimated average 
vertical penetration of the water column being ~3 m and a maximum 
penetration under ideal conditions of ~8–9 m (Hodgson et al., 2017; 
Martin Scott, HiDef Aerial Surveying, Ltd., pers. comm). Therefore, 
this data, including subsequent analysis and interpretation, repre-
sents only surface FFAs. Observations of the number and size of 
surface FFAs were collected from two aerial digital survey projects 
(Appendix  1: Section 1): (1) the New York State Energy Research 
and Development Authority (NYSERDA) Digital Aerial Baseline 
Survey of Marine Wildlife in Support of Offshore Wind Energy pro-
ject (hereafter, New York project) and (2) Department of Energy 
(DOE) Mid-Atlantic Baseline Studies project (hereafter, Mid-Atlantic 
project). The New York project conducted aerial transect surveys 
(n = 12) over the New York Bight (43,745 km2, Figure 1b) quarterly 
over 3 years (2016–2019; Appendix  1: Section 1). High-resolution 

images were collected using two still camera systems (Shearwater II 
and III), both with a 1.5 cm ground sampling distance (GSD; Robinson 
Willmott et al., 2021). The New York project surveyed the OPA with 
584 m wide linear transect strips for 7% coverage in all 3 years. In 
2016, a higher-resolution grid survey (330 × 219 m) with 10% cover-
age was also conducted across the smaller wind energy area (WEA). 
The Mid-Atlantic project conducted aerial transect surveys (n = 15) 
over the Mid-Atlantic Bight (13,245 km2; Figure  1c) from March 
2012 to May 2014 (Appendix 1: Section 1) with four belly-mounted 
high-resolution video cameras (Gen II), creating 200 m wide transect 
strips. Initial surveys (n = 3) in 2012 used a combination of 2 and 
3 cm GSD, adjusted to only 2 cm GSD for the remainder of the study 
to increase image clarity and color rendition for improved species 
identification across all taxa (Hatch et al., 2013). High-density paral-
lel transect surveys (1 km spacing) were conducted in each of the 
smaller WEAs, providing ~20% coverage, while the remainder of the 
OPA was surveyed via a sawtooth transect path with ~2% coverage.

For both projects, FFAs were identified from the transect image 
data using detection software and manual review methods followed 
by quality control (Buckland et al., 2012; Duron et al., 2015; Hatch 
et al., 2013; Normandeau Associates Inc., 2020). FFAs were identi-
fied as cohesive groups of similarly sized individuals with synchro-
nous swimming behavior, where individuals within the group were 
indistinguishable due to group density and small body size. Species 
composition of FFAs was not identifiable due to submersion and 
small body size, but mackerel, menhaden, herring, and hickory shad 
are major schooling species in the New York Bight (Normandeau 
Associates Inc., 2020), while menhaden, mackerel, herring, bay an-
chovy, alewife, and blueback herring are frequent schoolers in the 
Mid-Atlantic (Williams et al., 2015). The vertical height of the FFAs 

TA B L E  1 Occurrence (no. of tows present) of surface schooling forage fishes from the bottom trawl surveys of the US Northeast 
Continental Shelf (NES) study area included in the community distribution models.

Code Common name Scientific name Family

Occurrencesa

Autumn Spring

alewif Alewife Alosa pseudoharengus Clupeidae 1124 3336

atherr Atlantic thread herring Opisthonema oglinum Clupeidae 337 1

atlher Atlantic herring Clupea harengus Clupeidae 2082 3738

atlmac Atlantic mackerel Scomber scombrus Scombridae 816 2033

atlmen Atlantic menhaden Brevoortia tyrannus Clupeidae 115 99

atlsil Atlantic silverside Menidia menidia Atherinopsidae 12 536

atsaur Atlantic saury Scomberesox saurus Scomberesocidae 191 1

bayanc Bay anchovy Anchoa mitchilli Engraulidae 660 231

bluher Blueback herring Alosa aestivalis Clupeidae 496 2007

butter Atlantic butterfish Peprilus triacanthus Stromateidae 4728 1806

rherri Round herring Etrumeus teres Dussumieriidae 773 17

sandal Northern sand lance Ammodytes dubius Ammodytidae 327 703

silanc Silver anchovy Engraulis eurystole Engraulidae 153 0

spsard Spanish sardine Sardinella aurita Clupeidae 197 0

stranc Striped anchovy Anchoa hepsetus Engraulidae 692 21

aBold font indicates the species had >20 occurrences and was included in the model for that season.
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could not be determined from the imagery, so we could not estimate 
FFA volume. Instead, FFA size was defined as the visible surface area 
(m2) of each FFA, where the entire FFA was manually traced, enhanc-
ing the color of the image as necessary to determine the aggregation 
edges (Streampix 8, Norpix). Calibrations to account for the flight al-
titude and pixel resolution were applied to estimate the size of each 
shoal in m2 from the digital image.

For the FFA analysis, we aggregated FFA abundance and size data 
to a 4 × 4 km grid overlaid on the FFA study area (i.e., the combined 
area of both projects). For FFA abundance, FFAs were summed for 
each 4 × 4 km grid cell (n = 3361) by survey and season. Survey ef-
fort per grid cell was calculated by summing the total area of ground 
surveyed (km2) in that grid cell by survey and season. The 4 × 4 km 
grid was nested within a larger 32 × 32 km grid, which was used in 
the FFA model to account for spatial autocorrelation in the data (see 
Section 2.4).

2.3  |  Environmental data

We included a combination of static habitat features and dynamic 
oceanographic processes in our models as environmental covari-
ates. Initially, we considered 28 environmental covariates (13 static, 
14 dynamic), encompassing a range of surface and subsurface fea-
tures obtained from publicly available oceanographic data sources 
(Appendix 1: Tables A1 and A2). Static habitat included bathymetric 
terrain measures (e.g., depth, slope, rugosity) and sediment grain size. 
Dynamic covariates included remote-sensed, modeled, and derived 
data for surface and subsurface features (Appendix  1: Table A2). 
We calculated the SST seasonal anomaly (hereafter, SST anomaly) 
by dividing each SST value by the seasonal SST mean across the 
FFA 4 × 4 km grid (Figure 1a). SST and chlorophyll fronts and frontal 
metrics (i.e., Fprob: front persistence, Fmean: front intensity; Table 2) 
were derived from the raw SST and chlorophyll remote-sensed data 
products (see Appendix 1: Section 2 for detailed methods). All co-
variates were resampled with bilinear interpolation to a 4 × 4 km grid 
(spatially concurrent with the FFA 4 × 4 km grid) encompassing the 
NES study area. Dynamic covariates were used at a daily temporal 
resolution, matching the observation date.

Final covariate sets (see Table  2 for abbreviation definitions 
and descriptions) were selected for each model after examining 
pairwise Pearson correlation coefficients (−.6 > r > .6) and assess-
ing multi-collinearity with variance inflation factors (VIF < 3; Zuur 
et al., 2009). We aimed to use a common covariate set to compare 
the community distribution and FFA models, but this was not pos-
sible due to differences in correlations and multi-collinearity for 
the datasets. Covariate substitutions among models were made 
to represent similar features (e.g., SST anomaly for SST). The final 
covariate sets represented static habitat, dynamic surface, and dy-
namic subsurface features (see Section 2.4 and Table 2 for details). 
All covariates were mean-centered and variance-scaled prior to 
analysis.

2.4  |  Model description and evaluation

2.4.1  |  Forage fish community models

We applied JSDMs to model the forage fish community in the 
NES, using the HMSC R-package (Hierarchical Modeling of Species 
Communities, version 3.0-12; Ovaskainen & Abrego, 2020; Tikhonov 
et al., 2020). HMSC uses a Bayesian multivariate hierarchical gener-
alized linear mixed model framework to simultaneously fit all species 
distribution models and infer joint interactions among species and 
environmental covariates (Ovaskainen & Abrego, 2020; Ovaskainen 
et al., 2017). The HMSC framework uses latent variables to model 
random effects and estimates residual species associations, pro-
viding inference on species co-occurrences patterns not explained 
by responses to the environmental covariates (Ovaskainen & 
Abrego, 2020).

We restricted our analysis to the years 1997–2019 (autumn) and 
1998–2019 (spring) due to the availability of remote-sensed chloro-
phyll data. We selected species with enough presence detections 
(hereafter, occurrences) in the data to achieve a well-fitting model 
(>20). The HMSC framework leverages the relationships among 
species to accurately model rare community members (Erickson 
& Smith, 2023; Ovaskainen & Abrego, 2020). The autumn survey 
(7305 sampling tows) collected 14 species of schooling forage fish 
with >20 occurrences: alewife, Atlantic thread herring (hereafter, 
thread herring), Atlantic herring (hereafter, herring), Atlantic mack-
erel (hereafter, mackerel), Atlantic menhaden (hereafter, menhaden), 
Atlantic saury (hereafter, saury), bay anchovy, blueback herring, but-
terfish, round herring, northern sand lance, silver anchovy, Spanish 
sardine, and striped anchovy (see Table  1 for scientific names). In 
contrast, the spring survey (7225 tows) only collected 10 forage fish 
species with >20 occurrences: alewife, herring, mackerel, menhaden, 
Atlantic silverside (hereafter, silverside), bay anchovy, blueback her-
ring, butterfish, northern sand lance, and striped anchovy (Table 1).

Briefly, we describe the application of HMSC to the NOAA bot-
tom trawl data (see Ovaskainen & Abrego, 2020 for a complete model 
description). Independently for autumn and spring, we modeled spe-
cies occurrence as a function of the environmental covariates with a 
probit link regression mixed model. To account for residual variation 
not explained by the covariates, we specified two random effects: 
(1) a tow-level random effect to control for unexplained variance at 
the sampling level and (2) a temporally explicit random effect of year, 
modeled with an exponentially decaying covariance structure, to ac-
count for annual variation in occupancy. The residual species asso-
ciations are taken from the species-to-species variance–covariance 
matrix derived via the random effects (Ovaskainen & Abrego, 2020). 
Due to strong correlations between the two frontal metrics and no 
a priori expectation of predictive strength for Fmean versus Fprob 
covariates, we ran two alternative models for both seasons, sub-
stituting the two Fmean covariates for the Fprob versions. The au-
tumn covariate set included depth (log), rugosity, sediment, Chla, Chl 
Fprob (Fmean), FSLE, MLD, salinity, SST, and SST Fprob (Fmean). The 
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spring covariate set was simplified by dropping rugosity to achieve 
model convergence (Table 2).

We fit the models using the default prior distributions (Ovaskainen 
& Abrego,  2020) and sampled the posterior distribution with four 
Markov Chain Monte Carlo (MCMC) chains (see Appendix 2: Table A1 
for MCMC sampling parameters). MCMC convergence was examined 
visually and by calculating the potential scale reduction factors (PSRF; 
i.e., R̂) and effective sample size (ESS) of the alpha (spatial scale of the 
temporal random effect), beta (fixed effects), and omega (species as-
sociations per random effect) parameters (Brooks & Gelman,  1998; 
Gelman & Rubin, 1992). We considered the model adequately con-
verged if the mean and median PSRF values for the alpha (factor 1), 
beta, and omega parameters were less than 1.1 and if the ESS values 
were more than 400 (Appendix 2: Figure A1; Vehtari et al., 2021).

To determine the best-performing model (Fprob or Fmean version) 
for autumn and spring, we compared the Watanabe-Akaike Information 
Criterion (WAIC) scores (Watanabe, 2013). For the best seasonal mod-
els, we evaluated the explanatory power, predictive accuracy, and con-
ditional predictive accuracy by computing the area under the receiver 

operator curve (AUC; Pearce & Ferrier, 2000). Explanatory power was 
calculated using the model fitted to all data to get species-specific AUC 
values and a summarized mean AUC. For predictive accuracy, we per-
formed a threefold cross-validation analysis, randomly assigning each 
year of sampling data to one of the three folds, and computing predic-
tions for each fold (i.e., the testing data) based on the model fitted to 
the remaining two folds (i.e., the training data). The number of folds 
chosen was in keeping with best practices for HMSC analysis, while 
allowing for a reasonable computational time frame. For conditional 
predictive accuracy, we conducted conditional cross-validation to 
evaluate the importance of estimated species associations to model 
predictions, where the species-to-species variance–covariance matrix 
is employed along with the estimated covariate parameters to make 
predictions (for details see Ovaskainen & Abrego, 2020). Finally, to as-
sess the contributions of the fixed and random covariates to model 
fit, we partitioned the species-specific explained variance between the 
environmental covariates and each of the random effects.

2.4.2  |  Forage fish aggregation models

Using a hierarchical Bayesian framework, we developed a model to 
independently estimate abundance and size of FFA. The observed 
number of aggregations (yij) per 4 km grid cell i and survey j generally 
followed a zero-inflated negative binomial (ZINB) distribution due 
to overdispersion. We parameterized the ZINB using a zero-inflated 
Poisson-Gamma mixture formulation:

where �ij, is the dispersion parameter and zij is the zero-inflation param-
eter, which models the realized FFA abundance, given the presence � ij , 
following a Bernoulli distribution.

We incorporated the season (sea1 = autumn, sea2 = spring, 
sea3 = winter) of survey j as a fixed covariate (categorical) on the pa-
rameter (� ij), using a logit-linear link:

The log of expected mean abundance (�ij) was modeled as the 
linear predictor, log

(

�ij
)

, with survey effort (eij) added as an offset:

We modeled the linear predictor log
(

�ij
)

 as a log-linear equation 
with a spatial random effect (u1 ijk) at the 32 km grid cell (k) scale to 
account for spatial autocorrelation, and a suite (n = 10) of environ-
mental covariates (l = 1, 2, … n; Table 2):

The spatial random effect (u1 ijk) was incorporated as a proper 
Gaussian conditional autoregressive (CAR) model (Banerjee 
et al., 2003; Besag et al., 1991) that accounts for spatial dependence 
of grid-level data. The CAR model follows a multivariate normal dis-
tribution parameterized in terms of covariance:

where I is the identity matrix, C is the normalized weight matrix, and 
M is the diagonal matrix of conditional variances, �CAR is the precision 
scalar and γ is the degree of spatial dependence.

We modeled the logged observed aggregation size (log
(

sa
)

) for 
aggregation a as a Gaussian distribution:

where �Sizea
 is the mean and �Sizea is the variance of log

(

sa
)

. The esti-
mated aggregation size (�Sizea

) was modeled using a linear equation, 
incorporating a second spatial CAR set up as above (u2ak) as a random 
effect and the same suite of environmental covariates (l = 1, 2, … n):

For consistency and to facilitate comparisons, the FFA abun-
dance and size models were fit with the SST and Chla Fprob fron-
tal metrics to match the best-performing community model (see 
Section 3). In the FFA models, we chose SST seasonal anomaly and 
benthic position index (BPI), instead of SST and rugosity, respec-
tively, due to multicollinearity at the FFA study scale.

(1)yij ∼ Poisson
(

�ij�ijzij
)

(2)�ij∼Gamma(r, r)

(3)zij
∼Bernoulli

(

� ij

)

,

(4)logit
(

� ij

)

=�1+�sea1xsea1ij +�sea2xsea2ij +�sea3xsea3ij .

(5)log
(

�ij
)

= log
(

�ij
)

+eij.

(6)log
(

�ij
)

= u1 ijk + �1xDepth (log) ij
+ �2xBPIij + �3xSedimentij + �4xChlaij + �5xFSLEij + �6xSalinityij + �7xMLDij + �8xSST_Fprobij + �9xChl_Fprobij + �10xSST_anomalyij.

(7)u1 ijk
∼MVN

(

�CAR,
1

�CAR
(I−�C)−1M

)

,

(8)log
(

sa
)

∼Gaussian
(

�Sizea
, �Sizea

)

,

(9)�Sizea
=u2ak+

(

∑n

l=1
�Sizelxal

)

.
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We used the R package NIMBLE (version 0.12.2, r-nimble.org, de 
Valpine et al., 2017) to specify the FFA models and run the MCMC 
simulations. Three chains were sampled for 400,000 iterations each 
with 250,000 iterations discarded as burn-in and thinned by 20, 
giving 7500 posterior samples per chain. As with the HMSC mod-
els, chain convergence was assessed visually and using the PSRFs. 
Priors were selected to be minimally informative to achieve conver-
gence of the MCMC algorithm. For additional information on model 
specification, see https://github.com/cgoet​sch/Forage_Fish_Aggre​
gation_Models.

To evaluate model fit, we conducted a posterior predictive check 
of both the abundance and size models (Gelman et al., 2013; Kery 
& Royle,  2016), calculating the Chi-square discrepancy measure 
(Freeman-Tukey Goodness-of-Fit) and the Bayesian p-values. As a 
measure of explanatory power, we calculated the correlations be-
tween the observed data and predictions from the model fit to all 
data. To assess internal model consistency and predictive accuracy, 
we conducted a fivefold cross-validation with the data randomly as-
signed to folds. The correlation between observed data and model 
predictions (in-sample and out-of-sample) was calculated for each 
fold and summarized (mean ± standard deviation) across the five 
folds. Pearson correlation was used for the abundance model and 
Spearman correlation was used for the size model to account for a 
few extreme outliers in the predictions.

2.5  |  Model predictions

2.5.1  |  Forage fish community models

To identify the important environmental drivers of forage fish com-
munity occupancy for each season (autumn and spring), we calcu-
lated the mean estimates of the beta parameters (fixed effects) with 
significant drivers defined as those with at least 95% posterior prob-
ability. We summarized the beta parameters, calculating the mean 
absolute parameter values (hereafter, effect size) to evaluate the 
overall covariate relationship strength. We also predicted seasonal 
species-specific occurrence probability over the 4 km grid expanded 
to encompass the NES study area, using the seasonal means of the 
environmental covariates. From the predicted occurrence probabili-
ties, we identified distinct community types within each season using 
k-means cluster analysis to classify species composition patterns 
over space (kmeans in stats package; Foster et al., 2013; Ovaskainen 
& Abrego, 2020). We determined the optimal number of clusters 
using the elbow method (NbClust package, Charrad et al., 2014) and 
calculated the prevalence (i.e., mean occurrence probability) of each 
species within the community types. We also calculated the sea-
sonal species richness (i.e., summed multispecies probability of oc-
currence per grid cell) across the NES study area and the FFA study 
area and calculated the species richness mean ± standard deviation 
for each community type by season for both study areas.

2.5.2  |  Forage fish aggregation models

To determine which covariates were important drivers of FFA abun-
dance and size, we calculated the median and 95% credible inter-
vals (CI) of the fixed effects for each model. We evaluated how the 
most important environmental drivers influenced FFA abundance 
and size by calculating predictions across an environmental gradient 
(i.e., the maximum and minimum values of those covariates from the 
observed data). We also made seasonal (autumn, winter, spring, sum-
mer) predictions of abundance, size, and surface availability (abun-
dance × size) over the 4 km FFA grid, using the seasonal means of 
the environmental covariates over our study period. In addition, we 
calculated the FFA abundance (mean ± standard deviation) and FFA 
density (FFA/km2) per community type (as defined from the com-
munity models) within the FFA study area for autumn and spring.

3  |  RESULTS

During the aerial digital survey study period (2012–2019), there 
were a total of 21,934 surface FFAs (New York project: 14,288, 
Mid-Atlantic project: 7646) observed in the combined FFA study 
area (Figure 1a). Of these, most FFAs were observed in the summer 
(16,667) and the autumn (5085) compared to the spring (175) and 
winter (7). The size of aggregations ranged from 0.5 to 8651.2 m2 
with a mean size of 96.5 m2.

3.1  |  Model performance

3.1.1  |  Forage fish community models

For both seasons, the Fprob model was a marginally better fit than the 
Fmean model as evaluated by the WAIC scores (Table 3); thus, further 
discussion of the Fmean models is not presented. The autumn and 
spring Fprob models showed a good fit to the data with mean AUC 
scores of explanatory power of >0.93 for both (Table 3). Overall, the 
autumn Fprob model had high predictive accuracy with a 0.882 mean 
cross-validated AUC, while the spring model had lower predictive ac-
curacy with a mean cross-validated AUC of 0.795. The species-specific 
predictive accuracy for autumn ranged from 0.761 for butterfish to 
0.955 for thread herring (Table  3). The predictive accuracy of indi-
vidual species in the spring had greater variation; AUC scores ranged 
from 0.577 (mackerel) to 0.940 (silverside; Table 3). As with the autumn 
models, all species in the spring had acceptable fit. Including species 
associations marginally increased conditional predictive accuracy for 
autumn (mean AUC: 0.892, species-specific AUC range: 0.764–0.971; 
Table 3). For the spring models, including species associations greatly 
improved predictive accuracy (mean conditional AUC: 0.844 and 
species-specific AUC: 0.723–0.939) with the greatest increases seen 
for species with low initial predictive accuracy.
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3.1.2  |  Forage fish aggregation models

The posterior predictive check showed appropriate model specifica-
tion for both the abundance and size models with Bayesian p-values of 
.31 and .35, respectively (Table 4; Appendix 2: Figure A2). The explana-
tory power, as calculated from the correlations between the observed 
and predicted values for the full model, indicated an adequate fit for 
the abundance model (0.23 correlation) and a good fit for size model 
(0.59). Correlations were also consistent across the in-sample cross-
validation for both models (abundance: 0.23 ± 0.002; size: 0.59 ± 0.008; 
Table  4). The out-of-sample predictive accuracy (Table  4) was simi-
lar to the explanatory power for both abundance (0.22 ± 0.007) and 
size (0.49 ± 0.08) models, also showing consistency across folds. The 

primary aim of the FFA model was to conduct inference with predic-
tion as a secondary priority; model performance meets that goal. The 
lower out-of-sample predictive accuracy suggests that extrapolations 
from this model would have less value than within-sample prediction.

3.2  |  Environmental drivers

For the community models, the environmental covariates ac-
counted for most of the explained variance (autumn mean: 75.0%; 
spring mean: 62.6%), followed by the tow-level random effect (au-
tumn mean: 15.4%; spring mean: 27.8%) and temporal random ef-
fect (mean: 9.6% for both). Within the fixed covariates, the dynamic 

Model Species WAIC
Explanatory 
power

Predictive 
accuracy

Conditional 
predictive 
accuracy

Autumn Fprob - 2.305 0.949 0.882 0.892

alewif 0.986 0.927 0.945

atherr 0.989 0.955 0.971

atlher 0.971 0.942 0.946

atlmac 0.949 0.845 0.866

atlmen 0.964 0.920 0.927

atsaur 0.891 0.795 0.796

bayanc 0.985 0.945 0.954

bluher 0.989 0.923 0.954

butter 0.886 0.761 0.777

rherri 0.893 0.814 0.804

sandla 0.855 0.766 0.764

silanc 0.953 0.854 0.863

spsard 0.981 0.946 0.959

stranc 0.992 0.954 0.966

Autumn Fmean - 2.307 - - -

Spring Fprob - 2.659 0.937 0.795 0.844

alewif 0.944 0.723 0.802

atlher 0.929 0.634 0.776

atlmac 1.000 0.577 0.723

atlmen 0.921 0.900 0.902

atlsil 0.949 0.940 0.939

bayanc 0.947 0.934 0.935

bluher 0.986 0.701 0.805

butter 0.873 0.825 0.830

sandla 0.853 0.801 0.808

stranc 0.971 0.917 0.917

Spring Fmean - 2.663 - - -

Note: The mean and species-specific AUC scores for explanatory power (model fitted with all data), 
predictive accuracy (threefold cross-validation), and conditional predictive accuracy (conditional 
cross-validation) are provided for the best-performing model of each season.
Abbreviations: AUC, area under the receiver operator curve; Fmean, indicates model including the 
Chl and SST Fmean covariates; Fprob, indicates model including the Chl and SST Fprob covariates; 
WAIC, Watanabe-Akaike information criterion.

TA B L E  3 Fit statistics and cross-
validation results for the forage fish 
community models.

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10226, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 37GOETSCH et al.

surface covariates were the most explanatory in the autumn (41.6%), 
followed by the static covariates (31.0%), while in the spring the 
static covariates (31.2%) and dynamic surface covariates (29.7%) 
were similarly explanatory.

Important drivers for most of the community across both seasons 
were the static habitat feature depth (autumn: all spp.; spring: 8 of 
10 spp) and the dynamic surface feature SST (autumn: 13 of 14 spp; 

spring; all spp; Figure 2). In autumn, depth had the third highest effect 
size (0.80; Appendix 2: Table A2a), while SST only had a moderate 
effect size (0.24). All species, except herring and saury, had a neg-
ative relationship with depth, so as depth increased the probability 
of occurrence decreased (Figure  2a). In autumn, the probability of 
occurrence increased as SST became warmer for seven species and 
decreased with warmer SST for six species; only menhaden had a 

Model Bvp
Explanatory 
power

In-sample predictive 
accuracy (mean ± SD)

Out-of-sample 
predictive accuracy 
(mean ± SD)

Abundance 0.31 0.23 0.23 ± 0.002 0.22 ± 0.007

Size 0.35 0.59 0.59 ± 0.008 0.49 ± 0.08

Note: Abundance and size models were evaluated using a posterior predictive check with a 
Freeman–Tukey Goodness-of-Fit test, giving the Bayesian p-value (bpv). The correlation between 
observed data and model estimates was calculated as a measure of explanatory power (full model) 
and predictive power (fivefold cross-validation: in-sample and out-of-sample). Pearson correlation 
was used for the abundance model, while Spearman was used for the size model due to a few 
extreme outliers in model estimates.

TA B L E  4 Fit statistics and cross 
validation results for the forage fish 
aggregation (FFA) models.

F I G U R E  2 Beta parameter estimates for the (a) autumn and (b) spring community models. Orange and blue grid squares represent a 
significant relationship (either positive or negative, respectively) between the probability of occupancy and each environmental covariate. 
White grid cells represent non-significant relationships. Beta parameters were considered significant if they had at least 95% posterior 
support. The top panels depict the community-level covariate effect size, calculated as the mean absolute parameter values.
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12 of 37  |     GOETSCH et al.

non-significant relationship with SST (Figure 2a). In spring, depth had 
a lower effect size (0.44), and all significant species except alewife 
had decreased probability of occurrence with increasing depth. The 
probability of occurrence increased with warmer SST for only four 
species in the spring (Figure  2b), while occurrence probability de-
creased with warmer SST for the remainder. For both seasons, MLD 
(i.e., mixed layer depth, an indicator of seasonal stratification) had the 
lowest effect size (0.02 and 0.01 for autumn and spring, respectively; 
Appendix 2: Table A2) but was still a significant driver for part of the 
community (autumn: 9 of 14 spp; spring: 5 of 10 spp; Figure 2).

In autumn, the dynamic surface features, FSLE (i.e., presence 
of submesoscale eddies and filaments) and Chl Fprob (i.e., produc-
tivity front persistence) had the highest effect size (1.87 and 0.96, 
respectively, Appendix  2: Table  A2a) but were only significant 
drivers of occurrence for about half the community (7 spp each; 
Figure 2a). In the spring, the covariates with the highest effect size 
were FSLE (3.49) and SST Fprob (0.69; Figure 2b and Appendix 2: 
Table A2b). While FSLE was significant for seven species during 
spring, SST Fprob was only a significant driver for five species 
(Figure  2b). For most species, FSLE had a positive relationship 

F I G U R E  3 (a) Beta parameter estimates and credible intervals (CIs) from the forage fish aggregation (FFA) abundance model. Gray points 
represent the parameter medians, thick lines the 50% CI, and thin lines the 95% CI. Parameters with gray CIs are not significant. (b–f) FFA 
abundance predictions relative to the five strongest beta parameters. Shaded areas represent the 95% CI of the estimate.
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    |  13 of 37GOETSCH et al.

with the probability of occurrence; only two species in the autumn 
(saury and silver anchovy) and one in the spring (butterfish) were 
negatively associated with FSLE. Chl Fprob had a mostly positive 
relationship with occurrence (5 of 7 spp); only alewife and mack-
erel showed the opposite relationship (Figure  2a). In the spring, 
SST Fprob had a mostly negative relationship with occurrence (4 
of 5 spp; Figure 2b).

In both the FFA abundance and size models, the majority of 
environmental covariates had statistically significant effects (i.e., 
95% CIs did not contain 0; Figures  3 and 4). The most important 

covariates for estimating abundance were MLD, depth, salinity, SST 
anomaly, and Chla (Figure  3). As MLD and depth decreased, FFA 
abundance increased. Conversely, as salinity, SST anomaly, and Chla 
increased, so did FFA abundance. Although Chla had the lowest ab-
solute parameter estimate of these five covariates, the predicted 
median abundance across the range of Chla in the study area was 
two orders of magnitude higher than median abundance across the 
range of depth, and four orders of magnitude higher than for MLD, 
salinity, and SST anomaly. Only Chl Fprob and FSLE were not signif-
icant for abundance.

F I G U R E  4 (a) Beta parameter estimates and credible intervals (CI) from the forage fish aggregation (FFA) size model. Points represent the 
parameter medians, thick lines the 50% CI, and thin lines the 95% CI. The inset (gray box) enlarges the scale for parameters close to zero to 
improve readability. Parameters with gray CIs are not significant. (b–d) FFA size predictions relative to the three strongest beta parameters. 
Shaded areas represent the 95% CI of the estimate.
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14 of 37  |     GOETSCH et al.

The most important covariates for estimating FFA size were BPI, 
depth, and MLD (Figure 4). BPI had a strong negative effect on es-
timated FFA size but was most influential in the −80 to −40 range 
which corresponds to steep crevasses or valleys. Higher values of 
BPI corresponding to bathymetric flats (near 0) and steep hills or 
peaks (>1), were associated with very low FFA size. As depth in-
creased, the estimated size of aggregations decreased. MLD had op-
posite effects on abundance versus size: as MLD increased (i.e., the 
water column became less stratified), there were fewer, but larger, 
FFAs. SST anomaly was the only non-significant covariate for aggre-
gation size.

3.3  |  Spatial and seasonal patterns

The predicted species richness (i.e., summed occupancy) from 
the community models was highest nearshore and in the Gulf of 
Maine in the autumn; in spring, species richness was lower overall 
and less variable across the study area (Figure 5). In general, the 
predicted occurrence distributions of forage fishes in autumn, ex-
cept for butterfish, were more concentrated either nearshore or 
in the Gulf of Maine (Figure 6). Conversely, the spring-predicted 
occurrence distributions were more diffused across the shelf 
(Figure 7).

F I G U R E  5 Forage fish community 
species richness for (a, c) autumn and (b, 
d) spring across the Northeast Continental 
Shelf (NES) study area. Black outlines (a, b) 
delineate the forage fish aggregation (FFA) 
study area. The bottom panels enlarge 
the FFA study area. Species richness was 
calculated as the summed probability 
of occurrence across all species. Note 
that the scales for autumn and spring 
differ due to differences in the maximum 
species richness possible for each season.
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    |  15 of 37GOETSCH et al.

The FFA abundance model predicted the highest number of 
aggregations in the nearshore areas off the coasts of Delaware, 
Maryland, and Virginia, known as the Delmarva Peninsula and the 
southwestern end of Long Island (Figure 8). The areas of high FFA 
abundance were similar across all seasons, while the magnitude of 
abundance varied from highest in the summer to lowest in the win-
ter. Across the mid-to-outer shelf in the FFA study area, there were 
consistently low counts (1–10) of FFAs even during the summer, and 
almost no FFAs predicted in those areas during the winter. Autumn 
had a higher abundance of predicted FFAs than spring, particularly 
nearshore.

In general, the predicted size of aggregations was more spa-
tially uniform than abundance, with smaller FFAs predicted near 
the continental shelf break. The predicted size of aggregations was 
larger in the winter than in the other seasons, corresponding to 
less shelf stratification (i.e., deeper MLD). Since the predicted size 
was fairly constant across much of the shelf, the surface availabil-
ity (abundance × size) followed similar spatial patterns to that of FFA 
abundance.

3.4  |  Forage fish community types

From the k-means cluster analysis of the community occupancy 
predictions, we found six distinct forage fish community types 
in the NES study area for both seasons (Figures  9 and 10). The 
community types roughly correspond with broadscale features 
across the NES. For both seasons, Community Type 1 is located 
nearshore, particularly in the New York and Mid-Atlantic Bights 
but also in a few areas in the coastal Gulf of Maine. Community 
Types 2 and 3 represent the Gulf of Maine Coastal Current and the 
Gulf of Maine Basins areas, respectively, although the spatial ex-
tent varies between seasons. Moreover, in the spring, Community 
Type 2 also appears in the New York Bight. Community Type 4 
covers the Nantucket Shoals and Georges Banks areas in both 
seasons; however, in spring, this community type also includes 
a strip of the inner continental shelf across the New York and 
Mid-Atlantic Bights. In the autumn, Community Type 5 encom-
passes most of the continental shelf across the New York and 
Mid-Atlantic Bights; while, in the spring, it only covers the outer 
shelf. Community Type 6 covers the area of the continental slope 
in both seasons.

For both seasons, Community Type 1 had the highest mean spe-
cies richness (autumn: 5.79; spring: 3.37; Table 5) with 12 of 14 spe-
cies in the autumn and 9 of 10 species in the spring having prevalence 
>10% (Figures 9 and 10, Appendix 2: Table A3). Community Type 2 
had the second highest species richness (autumn: 2.41; spring: 1.56; 
Table  5). Herring dominated Communities 2 and 3 in the autumn, 
while in the spring, alewife was more prevalent. Community Types 4 
and 5 were butterfish-dominated in the autumn (Figure 9); whereas 
in the spring, Community Type 4 was not dominated by any species 
and Community Type 5 remained butterfish-dominated (Figure 10). 
During the autumn, Community Type 6 had the lowest species 

richness (0.28) with most forage fish species uncommon; while in 
the spring, Community Type 5 had the lowest species richness (1.03) 
and was butterfish-dominated.

Within the FFA study area, four community types were repre-
sented in the autumn, while during the spring, five were represented 
(Figures 9 and 10, Table 5). In both seasons, Community Type 1 had 
the highest FFA abundance (autumn: 14,441.17; spring: 634.72) and 
density (autumn: 1917.49/km2; spring: 59.09/km2), Community Type 
4 had second highest FFA abundance (autumn: 132.11; spring: 11.20) 
and density (autumn: 9.11/km2; spring: 0.70/km2), and Community 
Type 6 had the lowest for both (Table 5).

3.5  |  Species co-occurrence

Species co-occurrence patterns, representing the residual species-
to-species associations from the random effects, showed corre-
lations among species both temporally and by tow (Appendix  2: 
Figure A3). In the autumn, the temporal associations indicated that 
two groups of forage fishes fluctuate with each other over annual 
scales (Appendix 2: Figure A3a): (1) blueback herring, saury, alewife, 
thread herring, menhaden, mackerel, and herring; and (2) silver an-
chovy and Spanish sardine. Tow-level associations in the fall showed 
complex co-occurrence patterns (Appendix  2: Figure  A3b). In the 
spring, there were few significant temporal or tow associations 
(Appendix 2: Figure A3c,d).

4  |  DISCUSSION

The community and aggregation patterns we found for NES forage 
fishes help fill an existing knowledge gap on oceanographic drivers 
and distribution of surface prey availability for upper trophic-level 
marine predators in this ecosystem. Our community models identi-
fied potential hotspots of prey availability across the NES via species 
richness estimates, which overlapped spatially with areas of high FFA 
abundance in the New York and Mid-Atlantic Bights. Examination 
of the patterns across the community and FFA models led to three 
cross-cutting conclusions: (1) forage fish community models and FFA 
distributions indicate spatial overlap of hotspots, (2) static habitat 
features were important to both community and FFA distribution 
patterns, and (3) dynamic surface features were important drivers 
of community occupancy, while subsurface features were more im-
portant to FFAs.

4.1  |  Spatiotemporal patterns in forage fish 
availability

The predicted distribution of FFAs likely represents a more appro-
priate estimation of prey availability for surface-feeding predators, 
since modeling surface aggregations incorporates a measure of 
patchiness driven by schooling behavior and vertical accessibility. 
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16 of 37  |     GOETSCH et al.

F I G U R E  6 Autumn community model predictions of forage fish occurrence, based on bottom trawl data. Species codes are defined in Table 1.
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    |  17 of 37GOETSCH et al.

F I G U R E  7 Spring community model predictions of forage fish occurrence, based on bottom trawl data. Species codes are defined in 
Table 1.
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Although spatially limited to the Mid-Atlantic and New York Bight 
regions, our FFA models indicate increased abundance and total 
availability of surface FFAs in the nearshore areas off the southern 
coast of Long Island and the Delmarva Peninsula, with FFA abun-
dance declining across the shelf to the continental slope. This result 
is consistent with abundance distributions of forage fishes' primary 
zooplankton prey, such as Pseudocalanus spp, Temora longicornus, 
and Centropages typicus (Kane & Prezioso,  2008; Suca, Deroba, 
et al., 2021), distributions of predators (Bangley et al., 2020; Goyert 
et al., 2018; Roberts et al., 2016), and commercial fishing effort for 
some of these forage fishes, which often target large surface schools 
(VMS Commercial Fishing Density Data, www.north​easto​ceand​ata.
org; SEDAR, 2015).

Moreover, we found that areas of high predicted FFA abun-
dance coincide with areas of high predicted species richness from 
the forage fish community models. In contrast, areas of high FFA 
abundance, or surface prey availability, do not always correlate with 
areas of high individual species occupancy. Based on this relation-
ship, we would also expect high abundance of FFA in areas of high 
species richness in the NES outside the FFA study area (i.e., the Gulf 
of Maine, Nantucket Shoals, and Georges Banks). While we currently 
lack empirical data on FFA in these areas, they are known for high 
productivity and as important foraging areas for marine mammals 
and seabirds (Overholtz et al., 2007), suggesting that further study 
of the spatiotemporal patterns of FFA in these areas would inform 
our understanding of predator distributions and behaviors.

F I G U R E  8 Predicted spatial distribution of forage fish aggregation (FFA) abundance, size, and surface availability (abundance × size, 
cumulative m2). The spatial extent of the size and availability predictions has been reduced to only include on-shelf areas.
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4.2  |  Joint species distribution models reveal 
forage fish community dynamics

Forage fish aggregation composition from aerial digital survey data 
cannot be identified to the species level, but the community models 
provide insight into which forage fish species likely compose FFAs 
across space. In the New York Bight in the spring, the area with the 

highest estimated abundance of FFAs overlapped with Community 
Type 1 of the community model. We can infer that there is a high 
likelihood of spring FFAs in this area being composed of blueback 
herring, bay anchovy, herring, or menhaden, with lower probabilities 
for other species in Community Type 1. In contrast, during the au-
tumn in the same area, our models indicate there is a high likelihood 
that FFAs would be composed of butterfish or bay anchovy. More 

F I G U R E  9 Autumn forage fish community types: six distinct forage fish community types were identified across the NES study area via 
k-means cluster analysis. Circular bar plots depict the prevalence (i.e., mean occurrence probability) of species within the community type 
(y-scale max = 1). Species codes are defined in Table 1. Species with a prevalence <0.003 are not shown. Black outlines define the forage fish 
aggregation (FFA) study area. See Appendix 2: Table A3a for prevalence estimations. NES – U.S. Northeast Continental Shelf.
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research is needed on the species composition of FFAs in these 
areas over time to validate these model predictions.

The residual species associations from the forage fish com-
munity models provide information on the potential for species 
interactions among forage fishes (i.e., intraguild interactions), 
showing patterns of co-occurrence across years or tows that are 

not explained by the species' respective environmental niches. 
Given the high conditional model fit, especially for the autumn 
community model, it is possible that the temporal and tow asso-
ciations identified represent true species interactions. The tem-
poral associations indicate that groups of species are either linked 
(positive associations) or asynchronous (negative) over time, driven 

F I G U R E  1 0 Spring forage fish community types: six distinct community types were identified across the NES study area via k-means 
cluster analysis. Circular bar plots depict the prevalence (i.e., mean occurrence probability) of species within the community type (y-scale 
max = 1). Species codes are defined in Table 1. Species with a prevalence <0.003 are not shown. Black outlines define the forage fish 
aggregation study area. See Appendix 2: Table A3b for prevalence estimations. NES – U.S. Northeast Continental Shelf.
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by long-term processes or behaviors for which our models do not 
account. The tow-level associations may indicate species that are 
spatially associated with each other, such as herring, alewife, and 
blueback herring, which form large, multispecies schools for for-
aging (Turner et al., 2016). However, there is a paucity of data on 
forage fish behavior in the NES ecosystem, and much is still un-
known about interspecies interactions within this community. We 
must exercise caution when inferring species interactions based on 
residual associations, since they could also indicate that our models 
are missing environmental covariates that could explain some of 
this residual covariance. The potential existence of intraguild inter-
actions suggested by our study indicates a need for more research 
to elucidate these relationships within the forage fish commu-
nity, especially given evidence of asymmetrical distribution shifts 
of species in the NES due to climate-induced warming (Friedland 
et al., 2020; Hare et al., 2016; Kleisner et al., 2017). A better under-
standing of intraguild interactions, particularly regarding behaviors 
influencing the formation and composition of surface FFAs, could 
allow for more accurate estimations of FFA distribution and prey 
availability to predators across space and time.

4.3  |  Oceanographic drivers of forage fishes

4.3.1  |  Community distribution

Submesoscale filaments (FSLE) and front persistence (Fprob; au-
tumn: productivity; spring: SST), both dynamic surface features, 
were the most important environmental drivers for community 
distribution across seasons, but only for a subset of species. 
Convergent submesoscale (~10 km) eddy and filament structures 

aggregate phyto-  and zooplankton along their ridges or frontal 
edges (i.e., areas of high FSLE values; d'Ovidio et al., 2010; Smeti 
et al., 2015), attracting forage fishes to abundant prey resources. 
Similarly, Suca, Deroba, et al.  (2021) found that total kinetic en-
ergy, a proxy for mesoscale eddies, was an important driver for 
the distributions of sand lance, herring, alewife, and mackerel, sug-
gesting, along with our results, that mesoscale and submesoscale 
eddies are important for the occurrence and abundance of some 
forage fish species. Filament ridges are also associated with forag-
ing behavior of top predators, including seabirds, sharks, and ma-
rine mammals that are likely feeding on forage fishes and other 
prey that aggregate to these features (Abrahms et al., 2018; Cotté 
et al., 2011; Della Penna et al., 2015; Kai et al., 2009). Productivity 
and SST frontal features have also been associated with higher 
abundance of zooplankton (Genin et al.,  2005), forage fishes 
(Friedland et al., 2020), and top predators (Scales, Miller, Hawkes, 
et al., 2014), supporting the relationships found in our community 
models.

Sea surface temperature and depth were important predictors 
for nearly the entire forage fish community but had a weaker influ-
ence than the submesoscale eddies and front persistence. SST is 
well established as a regulating factor in the distribution of pelagic 
fishes via physiological thermal niche constraints (Ma et al., 2022), 
and top predator distributions are known to be associated with 
SST patterns, as they track prey distributions (Hazen et al., 2013). 
SST and depth were also consistently predictive of forage fish 
distributions in single-species modeling frameworks (Friedland 
et al., 2020; Holland et al., 2021; Suca, Deroba, et al., 2021). Thus, 
our models provide further evidence that SST and depth gradients 
are important for structuring the community distribution of forage 
fishes.

Season
Community 
type NES richness

FFA area 
richness FFA abundance

FFA 
density

Autumn 1 5.79 ± 1.89 5.63 ± 1.86 14,441.17 ± 43,985.09 1917.49

2 2.41 ± 0.38 - - -

3 1.50 ± 0.28 - - -

4 1.58 ± 0.39 1.92 ± 0.60 132.11 ± 447.95 9.11

5 1.07 ± 0.34 1.11 ± 0.35 27.52 ± 231.63 1.72

6 0.29 ± 0.18 0.29 ± 0.29 0 ± 0.00 0.0

Spring 1 3.37 ± 1.07 3.22 ± 0.97 634.72 ± 2174.49 59.09

2 1.56 ± 0.21 1.65 ± 0.24 9.41 ± 19.40 0.61

3 1.46 ± 0.14 - - -

4 1.15 ± 0.25 1.24 ± 0.27 11.20 ± 55.09 0.70

5 1.03 ± 0.13 1.01 ± 0.13 0.13 ± 0.36 0.01

6 1.17 ± 0.14 1.17 ± 0.10 0 ± 0.00 0.00

Note: Species richness was calculated for each community type as the mean ± SD of the summed 
occupancy for all grid cells classified to that type. FFA abundance metrics were calculated for the 
community types represented in the FFA study area. FFA abundance is the estimated number 
(mean ± SD) of FFA spatially overlapping each community type. FFA density is calculated as the 
number of FFA per km2 for each community type.

TA B L E  5 Species richness, forage fish 
aggregation (FFA) abundance, and FFA 
density by community type across the US 
Northeast Continental Shelf (NES) and 
FFA study areas.
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4.3.2  |  Aggregating behavior

The complex interplay between MLD and the benthic terrain combined 
with behavioral mechanisms driven by foraging needs and predator 
avoidance may be associated with the spatial patterns we found in FFA 
abundance and size. In the NES, MLD is a temporal indicator of sea-
sonal stratification of the water column with weak stratification and 
deeper MLD during the winter due to strong upper ocean mixing, con-
trasting with strong stratification and a shallow MLD during the sum-
mer (Cai et al., 2021; Li et al., 2015). Seasonal spatial variation in MLD 
reflects differences in subsurface temperature and salinity gradients 
(i.e., thermo- and haloclines; collectively, pycnoclines) across the shelf 
due to localized bathymetry and coastal processes such as freshwater 
inputs and tidal mixing (Cai et al., 2021; Li et al., 2015). FFA formation 
is influenced by strong links between seasonal surface stratification, 
subsurface productivity gradients, and zooplankton distribution with 
the resources of forage fishes concentrated within a relatively smaller 
volume of space during the summer and fall, while those resources are 
dispersed over a larger volume in the winter and spring.

Mixed layer depth was the most important predictor of FFA 
abundance and the second most important predictor of FFA size. 
However, the direction of this relationship differed with shal-
lower MLD (stronger stratification) associated with more FFA, and 
deeper MLD (weaker stratification) associated with larger FFA. 
Sharp pycnoclines due to strong stratification are associated with 
high subsurface productivity (Weston et al., 2005), which is, in turn, 
linked to increased aggregations of zooplankton (Genin,  2004), 
driving higher abundance of FFA, but smaller individual FFA size. 
Additionally, links have been found between stratified areas where 
abrupt changes in topography, such as steep depressions (i.e., neg-
ative BPI values), cause internal waves that drive large aggregations 
of forage fish to the surface (Cox et al., 2018). These conditions are 
commonly found at the shelf edge or offshore banks, resulting in 
local upwelling that depresses MLD, allowing resources to disperse 
and larger FFAs to form.

The regions of highest predicted FFA abundance for our models 
were also coincident with the relatively shallow depths associated 
with the mouths of major freshwater inputs, such as the Chesapeake 
and Delaware Bays, suggesting that in the Mid-Atlantic and New 
York Bights, shallow habitat may function both as convergence 
zone (i.e., a mixing zone between water masses and fine-scale tidal 
currents) and refugia from predation (Litz et al., 2014). Moreover, 
on continental shelves like the NES ecosystem, shallow depth may 
drive zooplankton aggregation formation by blocking diel migra-
tion back to deeper waters (i.e., topographic blockage, Isaacs & 
Schwartzlose, 1965). Topographic blocking traps those planktonic 
aggregations in shallower regions, exposing them to forage fish 
predation, and, subsequently, resulting in FFA formation via trophic 
focusing (Genin, 2004). However, BPI, a measure of the benthic to-
pography, was a more important predictor than depth for FFA size. 
In both models, shallower depths were an indication of more and 
bigger FFA, while larger FFAs were associated with extremely neg-
ative BPI, indicating abrupt, benthic depressions or valley bottoms 

(Lundblad et al., 2006). This connects back to the aforementioned 
relationship with MLD, where stratified regions interact with abrupt 
benthic depressions to spur the formation of large FFAs.

4.3.3  |  Contrasting drivers of distributions and 
aggregations

While FFA abundance may overlap spatially with community spe-
cies richness, these patterns are driven by different oceanographic 
processes. MLD, a subsurface dynamic variable, was important to 
FFA abundance and size. However, MLD was not important at the 
community occupancy level with a low effect size in both autumn 
and spring. In contrast, the environmental drivers with the larg-
est influence on community-level occupancy were dynamic sur-
face processes: eddies and frontal features. The differences in the 
oceanographic processes driving community occupancy versus FFA 
abundance are likely due to the aggregation dataset inherently in-
cluding behavioral information (i.e., surface schooling behavior), 
which is absent from the occupancy dataset. Subsurface features 
describing the vertical water column may be more tightly linked with 
behavioral processes related to depth (i.e., diel migration, surface ag-
gregation formation). Relatedly, differences in oceanographic drivers 
may also reflect that FFAs are nested hierarchically within com-
munity occupancy, such that FFAs represent finer-scale structures 
within the larger community distribution (Fauchald et al.,  2000). 
Conversely, depth, a static habitat feature, was important to all lev-
els of organization (species occupancy, community occupancy, and 
FFA abundance/size) and has been an important predictor of forage 
fish abundance in multiple studies of the NES ecosystem (Friedland 
et al., 2019; Suca, Deroba, et al., 2021). This finding suggests that 
some static habitat features may influence forage fishes' spatial dis-
tribution regardless of scale or may indicate that depth integrates 
several important processes in one measure.

4.4  |  Implications for ecosystem change

The FFA patterns and community dynamics described by our mod-
els are reliant upon relatively recent historical data (FFA: 2012–
2019, community SDM: 1997–2019). Due to climate change, the 
NES is experiencing rapid warming at three times the global aver-
age (Pershing et al., 2021) and increased frequency of marine heat-
waves (Laufkötter et al.,  2020). Concurrent decreases in surface 
salinity combined with rising temperatures are expected to drive 
increased seasonal stratification (i.e., MLD; Pershing et al., 2021), 
which, based on our findings, has the potential to affect the distribu-
tion, abundance, and aggregating behavior of forage fishes in this 
system. Climate-induced warming has already induced detectable 
broadscale and seasonal distribution shifts across the trophic web 
in the NES, from plankton (Chust et al., 2014), fish, and macroin-
vertebrates (Friedland et al.,  2020) to predatory fishes (Muhling 
et al.,  2017) and marine mammals (Pendleton et al., 2022), and is 
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expected to influence the distributions of key forage fishes included 
in this study, such as sand lance, herring, and menhaden (Hare 
et al., 2016; Staudinger et al., 2020; Suca, Wiley, et al., 2021). These 
distribution shifts are not expected to occur symmetrically and may 
not result in wholescale northward shifts of the present community. 
Instead, these changes could result in the development of novel, no-
analog communities (i.e., community composition unlike that known 
from the historical or paleontological record), leading to changes 
in community relationships among forage fish species and affect-
ing spatiotemporal patterns in aggregating behavior (Williams & 
Jackson, 2007). Moreover, climate-induced warming can affect the 
abundance, size, quality (i.e., lipid content), and intraguild dynamics 
of forage fishes, disrupting trophic energy transfer to higher trophic 
level predators and fueling mass mortality events of predators 
(Arimitsu et al., 2021). Our results highlight the need for additional 
research into the effects of climate change on subsurface dynamic 
processes and how those effects may impact trophic interactions.

Additionally, the imminent development of offshore wind energy 
(i.e., the construction of large-scale offshore windfarms) in the NES 
may contribute to meso- and submesoscale changes in localized cur-
rent patterns circulation and subsurface dynamics, such as stratifica-
tion (Christiansen et al., 2022; Dorrell et al., 2022). Although a recent 
study shows that wind energy lease areas overlap considerably with 
the core habitat of forage fish species (Friedland et al., 2023), it is 
unknown how these habitat alterations may influence forage fish ag-
gregating behavior in the NES (but see Raoux et al., 2017), and, thus, 
realized prey availability. Unanticipated synergistic interactions be-
tween climate change effects, offshore wind energy development, 
and other anthropogenic stressors, such as pollution and commercial 
and recreational fisheries, could further alter patterns of forage fish 
availability across the NES shelf.

4.5  |  Limitations and sources of bias

The NOAA bottom trawl surveys are not designed to sample pe-
lagic or surface schooling species, and there may be differential 
catchability rates among the forage fishes, as well as biases in size 
selectivity due to gear design. Moreover, water depth influences 
the probability of capture of forage fishes by bottom trawls, since 
midwater forage fishes may be more available to the gear over shal-
lower bottoms (<50 m) compared to deeper waters where they are 
more likely to be captured only on the deployment and recovery 
of the gear. However, while these species are defined as pelagic, 
many do use the entire water column on the continental shelf via 
diel migration, predator avoidance, foraging, and spawning behav-
iors (Freon & Misund, 1999). In addition, there was a significant gear 
change during our study period (2009) that led to notable catch 
changes for many forage fish species, especially sand lance (Miller 
et al., 2010). After the gear change, the trawl catch of sand lance has 
been considered unreliable for the purposes of abundance monitor-
ing (Richardson et al., 2014); however, it has been deemed adequate 
for presence-absence occurrence models that span that period 

(Friedland et al., 2020). Despite bottom trawls not being the ideal 
sampling method for forage fishes, these surveys are considered to 
be reliable for measuring abundance for stock assessments and dis-
tribution analyses for some forage fish species (Northeast Fisheries 
Science Center, 2018). To address these issues and control bias, we 
confined our community analysis to modeling occupancy rather than 
abundance. In addition, scale is confounded with behavior such that 
estimating broadscale occupancy in JSDMs rather than finer-scale 
abundance may mask behaviorally driven relationships with oceano-
graphic processes, such as community abundance with MLD. Future 
studies could compare a community JSDM using abundance data to 
the FFA model results to see if community abundance patterns more 
closely track FFAs than occupancy; however, species such as sand 
lance may need to be excluded.

In the aerial survey imagery, submerged fauna may not be de-
tected due to observation conditions (i.e., turbidity, sea state, etc.,), 
water depth, or seasonal variation in behavior. The digital recorders 
only capture the top several meters of the water column (Hodgson 
et al., 2017; Martin Scott, HiDef Aerial Surveying Ltd., pers. comm). 
Due to variations in vertical distribution patterns of schools, FFAs 
may be more detectable at shallower depths, while seasonal behav-
iors of some schooling species, such as shifts to deeper water, may 
also limit FFA detection by aerial surveys (Freon & Misund, 1999). 
To address these detection biases, we limited our interpretation to 
surface FFA patterns, acknowledging that the data does not sam-
ple all FFA in the water column. In addition, the aggregation models 
were limited by the inability to identify FFA composition at species-
level and by the aerial survey sampling frequency, preventing us 
from integrating the datasets into a combined model for forage 
fish species and aggregations. Thus, we were reliant upon post-hoc 
comparisons of our predicted distributions. Finally, FFA occurrence 
is a highly ephemeral process, occurring over spatiotemporal scales 
smaller than the 4 km-, daily-scale oceanographic data we used in 
our models, or the 4–8 aerial surveys/year conducted in this study. 
Collecting more finer-scale and local oceanographic and survey data 
could improve model performance and reveal additional habitat 
relationships.

5  |  CONCLUSIONS

In the context of rapid climate change and other anthropogenic 
stressors in the NES, we expect concomitant changes in both the 
broadscale distribution of forage fishes and the patch-scale distri-
bution of FFA. Changes in patch-scale FFA dynamics, as a measure 
of realized prey availability, are likely to have cascading effects 
through the food web, impacting predator–prey interactions and 
driving concurrent changes in predator distributions as they track 
changing prey availability. Our analysis provides an initial step to 
better understanding the realized prey availability of upper trophic 
level predators and how to integrate that information to track 
current predator–prey interactions and forecast these relation-
ships into an uncertain future. Additionally, our results show that 
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subsurface dynamic processes, such as MLD, are better predictors 
of FFA than surface features like eddies and fronts, highlighting 
the need to implement more informative proxies for realized prey 
availability at the corresponding spatial and organizational scales 
of predator–prey interactions. When designing marine predator–
prey interaction studies, subsurface dynamic variables may be key 
for detecting these scale-dependent relationships. Understanding 
the key drivers of forage fish dynamics at scales relevant to for-
aging marine predators can aid scientists and managers in imple-
menting effective management and conservation strategies across 
trophic levels.
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APPENDIX 1

DATA INFORMATION

Section 1: Response data accessibility information
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from 1997 to 2019, Catalog ID: 22560. NOAA National Centers for 
Environmental Information, https://www.fishe​ries.noaa.gov/inpor​t/
item/22560.
Northeast Fisheries Science Center, 2020: Spring Bottom Trawl 

Survey from 1998 to 2019, Catalog ID: 22561. NOAA National 
Centers for Environmental Information, https://www.fishe​ries.noaa.
gov/inpor​t/item/22561.

Aerial digital survey data
APEM and Normandeau Associates prepared for New York State 
Energy Research and Development Authority. 2018. Digital Aerial 
Baseline Survey of Marine Wildlife in Support of Offshore Wind 
Energy – OPA 2016. OBIS-SEAMAP ID: 1817. Data accessible from 
OBIS-SEAMAP (http://seamap.env.duke.edu/datas​et/1817).
APEM and Normandeau Associates prepared for New York State 

Energy Research and Development Authority. 2018. Digital Aerial 
Baseline Survey of Marine Wildlife in Support of Offshore Wind 
Energy – WEA 2016. OBIS-SEAMAP ID: 1818. Data accessible from 
OBIS-SEAMAP (http://seamap.env.duke.edu/datas​et/1818).
APEM and Normandeau Associates prepared for New York State 

Energy Research and Development Authority. 2019. Digital Aerial 

Baseline Survey of Marine Wildlife in Support of Offshore Wind 
Energy – OPA 2017. OBIS-SEAMAP ID: 1994. Data accessible from 
OBIS-SEAMAP (https://seamap.env.duke.edu/datas​et/1994).
APEM and Normandeau Associates prepared for New York 

State Energy Research and Development Authority. 2019. Digital 
Aerial Baseline Survey of Marine Wildlife in Support of Offshore 
Wind Energy – OPA 2018. OBIS-SEAMAP ID: 2073. Data acces-
sible from OBIS-SEAMAP (https://seamap.env.duke.edu/datas​
et/2073).
Biodiversity Research Institute and HiDef Aerial Surveying pre-

pared for the Department of Energy Mid-Atlantic 2015. Mid-Atlantic 
Digital Aerial Survey 2012 – DOE/BRI, ID 115. Accessible through 
the NOAA National Centers for Coastal Ocean Science (NCCOS), 
Northwest Atlantic Seabird Catalog Version 0.6.2. Data available 
upon request: Contact Arliss Winship, CSS, Inc. under contract 
to NOAA, Biogeography Branch, Marine Spatial Ecology Division, 
NCCOS, 1305 East–West Hwy, SSMC-4, N/SCI-1, #9245, Silver 
Spring, MD 20910, arliss.winship@noaa.gov. Data can also be down-
loaded at https://briwi​ldlife.org/wp-conte​nt/uploa​ds/2021/09/
BRI_DOE_Hidef_aeria​lSurv​eys_final.zip.
Biodiversity Research Institute and HiDef Aerial Surveying pre-

pared for the Department of Energy. 2015. Mid-Atlantic Digital Aerial 
Survey 2013 –  DOE/BRI, ID 148. Accessible through the NOAA 
National Centers for Coastal Ocean Science (NCCOS), Northwest 
Atlantic Seabird Catalog Version 0.6.2. Data available upon re-
quest: Contact Arliss Winship, CSS, Inc. under contract to NOAA, 
Biogeography Branch, Marine Spatial Ecology Division, NCCOS, 
1305 East–West Hwy, SSMC-4, N/SCI-1, #9245, Silver Spring, MD 
20910, arliss.winship@noaa.gov. Data can also be downloaded at 
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https://doi.org/10.1016/j.tree.2015.09.007
https://doi.org/10.1016/S0022-0981(02)00145-4
https://doi.org/10.1029/96jb00104
https://doi.org/10.1093/PLANKT/FBI064
https://doi.org/10.1093/PLANKT/FBI064
https://doi.org/10.1890/070037
https://doi.org/10.18637/jss.v032.b01
https://doi.org/10.18637/jss.v032.b01
https://doi.org/10.1002/ece3.10226
https://doi.org/10.1002/ece3.10226
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http://seamap.env.duke.edu/dataset/1817
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https://seamap.env.duke.edu/dataset/1994
https://seamap.env.duke.edu/dataset/2073
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https://briwi​ldlife.org/wp-conte​nt/uploa​ds/2021/09/BRI_DOE_
Hidef_aeria​lSurv​eys_final.zip.
Biodiversity Research Institute and HiDef Aerial Surveying pre-

pared for the Department of Energy. 2015. Mid-Atlantic Digital 
Aerial Survey 2014 –  DOE/BRI, ID 168. Accessible through the 
NOAA National Centers for Coastal Ocean Science (NCCOS), 
Northwest Atlantic Seabird Catalog Version 0.6.2. Data available 
upon request: Contact Arliss Winship, CSS, Inc. under contract 
to NOAA, Biogeography Branch, Marine Spatial Ecology Division, 
NCCOS, 1305 East–West Hwy, SSMC-4, N/SCI-1, #9245, Silver 
Spring, MD 20910, arliss.winship@noaa.gov. Data can also be down-
loaded at https://briwi​ldlife.org/wp-conte​nt/uploa​ds/2021/09/
BRI_DOE_Hidef_aeria​lSurv​eys_final.zip.

Section 2: Front detection
We detected sea surface temperature (SST) and chlorophyll a (Chla) 
fronts from daily rasters (Appendix 1 Table A2), using the Cayula-
Cornillon Fronts tool in the Marine Geospatial Ecology (MGET) 
toolbox (version 0.8a75, Roberts et al., 2010) for ArcGIS (version 
10.8.1, ESRI Inc.). This tool uses the Cayula and Cornillon SIED 
(Single Image Edge Detection) algorithm to identify fronts (Cayula 
& Cornillon, 1992). For the detection of SST fronts, we used a 0.4°C 
temperature threshold (Cayula & Cornillon, 1992). To increase de-
tection of coastal and smaller scale fronts, we adjusted the default 
tool settings to a 16 × 16 pixel window, a 4 window stride, and a 5 × 5 

kernel (Roa-Pascuali et al., 2015). We also adjusted the spatial cohe-
sion parameters to reflect the smaller histogram window: 0.87 mini-
mum single population spatial cohesion and 0.88 minimum global 
population spatial cohesion (Cayula & Cornillon, 1992). For the de-
tection of Chla fronts, we optimized the CCA parameters to better 
detect coastal fronts, using a 0.4 mg/m3 threshold. As with the SST 
fronts, we adjusted the parameters as follows: a 16 × 16 pixel win-
dow, a 3 window stride and a 5 × 5 kernel, changing the minimum 
single and global population cohesion values accordingly. We also 
set the minimum criterion function to 0.74 to allow “curvier” fronts 
to be identified (Cayula & Cornillon, 1992). We used the thin option 
to ensure one-pixel-width fronts.
Frontal gradients were calculated for SST and Chla using the 

Belkin O'Reilly gradient algorithm (Belkin & O'Reilly, 2009) with the 
detectFronts function in the grec package in R (version 1.4.1). Then, 
all detected fronts and calculated gradients over a 7-day moving 
window were combined into daily composite frontal maps (Scales, 
Miller, Embling, et al., 2014), and used to calculate two frontal met-
rics: Fprob and Fmean (Miller, 2009; Suberg et al., 2019) for each day 
of the study period (1997–2019). Fprob is a measure of front persis-
tence and is calculated as the probability of a front being detected 
each day over the rolling 7-day window. Fmean is a measure of front 
intensity and is calculated as the average of the frontal gradient 
within the detected fronts.
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TA B L E  A 1 Static environmental data details and access information.

Covariate Description
Spatial 
resolution Data source References

BPI Benthic position index: derived 
from slope.

350 m Derived from NAMERAa bathymetry 
data with an inner radius = 5 and 
outer radius = 50

Lundblad et al. (2006)

Complexity Terrain ruggedness index 500 m Derived from NOAA Coastal Relief 
Model, NCEI

https://doi.org/10.7289/V5MS3QNZ

Riley et al. (1999)

Depth (log) Log of the bathymetric elevation 15 arc-sec General bathymetric chart of the 
oceans (GEBCO): https://www.
gebco.net/

https://doi.org/10.5285/a29c5​
465-b138-234d-e053-6c86a​
bc040b9

GEBCO Compilation 
Group (2020)

Distance to shelf Distance in kilometers to the 
200 m isobath representing the 
continental shelf break

4 km Derived from GSHHGb (Global 
Self-consistent Hierarchical High 
Resolution Geography) Shorelines 
Version 2.3.7, 2017, using ArcGIS 
10.8.1.

Wessel and 
Smith (1996)

Distance to shore Distance in kilometers to the 
GSSHHG shoreline

4 km Derived from GSHHGb (Global 
Self-consistent Hierarchical High 
Resolution Geography) Shorelines 
Version 2.3.7, 2017, using ArcGIS 
10.8.1.

Wessel and 
Smith (1996)

Planform curvature Benthic planform curvature 15 arc-sec Derived from Gaussian smoothed 
(2 km spatial scale) GEBCO 
bathymetry

Winship et al. (2018)

Profile curvature Benthic profile curvature 15 arc-sec Derived from Gaussian smoothed 
(2 km spatial scale) GEBCO 
bathymetry

Winship et al. (2018)

Rugosity Variation in amplitude of the height 
of the bathymetric terrain as 
given by the ratio of the actual 
to the geometric surface area

500 m Derived from NOAA Coastal Relief 
Model, NCEI

https://doi.org/10.7289/V5MS3QNZ

Friedman et al. (2012)

Seabedforms Categorical seabed topography; 
combination of the seabed 
topographical position and 
shape

80 m North Atlantic Marine Ecoregional 
Assessment (NAMERA)a

Greene et al. (2010)

Slope Benthic slope 15 arc-sec Derived from Gaussian smoothed 
(2 km scale) GEBCO bathymetry, 
using DEM Surface Toolsc

Winship et al. (2018)

Slope of slope Slope of the benthic slope 15 arc-sec Derived from Gaussian smoothed 
(2 km scale) GEBCO bathymetry, 
using DEM Surface Toolsc

Winship et al. (2018)

Sediment Benthic soft sediment grain size 
(mm)

700 m North Atlantic Marine Ecoregional 
Assessment (NAMERA)a

Greene et al. (2010)

VRM Vector ruggedness measure; the 
variation in the 3-d orientation 
of cells in a neighborhood

350 m Derived from NAMERAa bathymetry 
data

Sappington 
et al. (2007)

aData access: http://www.conse​rvati​ongat​eway.org/Conse​rvati​onByG​eogra​phy/North​Ameri​ca/Unite​dStat​es/edc/repor​tsdat​a/marin​e/namer​a/
namer​a/Pages/​Spati​al-Data.aspx.
bData access: https://www.ngdc.noaa.gov/mgg/shore​lines/.
cData access: Jenness, 2013.
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APPENDIX 2

FORAGE FISH MODELS

Model
Total iterations 
(million)

Burn-in 
(million) Thin

Samples 
per chain

Total samples 
(4 chains)

Autumn Fprob 2.5 1 750 2000 8000

Autumn Fmean 3.3 1.5 900 2000 8000

Spring Fprob 3.6 1.5 700 3000 12,000

Spring Fmean 3.6 1.5 700 3000 12,000

Note: Models were run with different sampling parameters to achieve adequate chain convergence 
and mixing.

TA B L E  A 1 Markov Chain Monte Carlo 
(MCMC) posterior distribution sampling 
parameters for the forage fish community 
models.

TA B L E  A 2 Beta parameter estimates for (a) autumn and (b) spring community models.

Species Depth (log) Rugosity Sediment SST Chla FSLE MLD Salinity SST Fprob Chl Fprob

(a)

alewif −0.17 0.26 −0.68 −0.56 0.11 5.27 −0.01 −0.37 0.36 −1.06

atherr −1.57 −0.75 −0.22 0.47 −0.04 −0.32 0.06 0.07 0.78 3.21

atlher 0.58 0.09 −0.16 −0.28 0.03 3.77 0.01 −0.46 −0.08 0.53

atlmac −0.50 0.07 −0.03 −0.25 0.02 −0.93 0.00 0.04 0.31 −0.73

atlmen −0.76 −0.09 −0.21 0.00 0.03 3.52 −0.01 −0.10 −0.84 −0.46

atsaur 0.14 −0.04 0.12 −0.08 0.02 −2.08 0.00 −0.22 0.27 0.56

bayanc −1.43 −0.01 −0.12 0.15 0.09 2.17 0.01 −0.30 −0.75 0.51

bluher −0.97 0.03 −0.59 −0.55 0.09 2.57 −0.02 −0.25 0.39 −0.67

butter −0.69 −0.08 −0.23 0.03 0.04 −0.59 0.01 −0.08 0.08 −0.07

rherri −0.42 −0.12 −0.10 0.09 −0.04 −0.29 −0.03 −0.04 −0.55 0.53

sandla −0.32 −0.19 0.33 −0.07 −0.09 −0.66 −0.01 0.00 −0.11 0.53

silanc −0.67 −0.15 −0.11 0.03 0.03 −1.49 −0.01 0.09 0.11 −0.50

spsard −1.03 −0.43 −0.25 0.35 −0.05 −0.73 0.05 0.13 0.13 0.40

stranc −1.89 −0.81 −0.35 0.47 0.01 1.71 0.07 0.07 −0.43 3.63

Absolute mean 0.80 0.22 0.25 0.24 0.05 1.87 0.02 0.16 0.37 0.96

(b)

alewif 0.55 - −0.35 −0.16 0.15 7.69 −0.02 −0.31 −0.16 −0.39

atlher 0.02 - −0.12 −0.15 0.07 4.85 0.00 −0.22 −0.61 0.52

atlmac −0.18 - −0.21 −0.17 −0.17 2.21 0.03 0.41 −1.04 −0.27

atlmen −0.58 - −0.41 0.07 −0.03 −0.31 −0.01 −0.05 −1.86 0.94

atlsil −0.88 - −0.23 −0.36 0.00 −0.43 −0.04 −0.07 1.06 −0.32

bayanc −0.72 - −0.31 0.16 −0.05 0.04 0.01 −0.21 −0.87 −0.42

bluher −0.17 - −0.45 −0.06 0.06 10.22 −0.03 −0.27 −0.67 −0.47

butter 0.04 - −0.36 0.15 −0.06 −2.69 0.00 0.30 −0.11 −0.64

sandla −0.55 - 0.27 −0.14 0.04 3.19 0.00 0.16 0.34 0.44

stranc −0.73 - −0.60 0.12 −0.08 3.29 0.00 0.21 −0.17 −0.40

Absolute mean 0.44 - 0.33 0.15 0.07 3.49 0.01 0.22 0.69 0.48

Note: Values in black are supported with at least 0.95 posterior probability; grayed-out values had < 0.95 posterior probability. Species codes are 
defined in Table 1.
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TA B L E  A 3 Estimated prevalence (mean probability of occurrence) of species within distinct forage fish communities for the (a) autumn 
and (b) spring community models.

Species Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

(a)

alewif 0.315 0.637 0.200 0.118 0.007 0.000

atherr 0.286 0.000 0.000 0.000 0.002 0.000

atlher 0.051 0.845 0.736 0.334 0.072 0.138

atlmac 0.546 0.219 0.094 0.204 0.055 0.005

atlmen 0.629 0.003 0.000 0.013 0.023 0.000

atsaur 0.020 0.070 0.064 0.045 0.017 0.014

bayanc 0.917 0.000 0.000 0.007 0.033 0.000

bluher 0.649 0.086 0.003 0.040 0.004 0.000

butter 0.998 0.525 0.388 0.758 0.789 0.129

rherri 0.196 0.000 0.000 0.003 0.015 0.000

sandla 0.160 0.020 0.020 0.056 0.037 0.006

silanc 0.311 0.000 0.000 0.002 0.007 0.000

spsard 0.117 0.000 0.000 0.000 0.002 0.000

stranc 0.590 0.000 0.000 0.000 0.011 0.000

(b)

alewif 0.237 0.654 0.581 0.252 0.162 0.164

atlher 0.424 0.402 0.282 0.266 0.134 0.027

atlmac 0.031 0.125 0.174 0.118 0.108 0.074

atlmen 0.374 0.003 0.001 0.017 0.014 0.008

atlsil 0.311 0.003 0.000 0.006 0.000 0.000

bayanc 0.654 0.004 0.000 0.029 0.023 0.019

bluher 0.712 0.176 0.081 0.155 0.083 0.007

butter 0.114 0.163 0.327 0.217 0.479 0.858

sandla 0.308 0.030 0.011 0.084 0.021 0.002

stranc 0.208 0.000 0.000 0.004 0.006 0.010

Note: Species codes are defined in Table 1.
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F I G U R E  A 1 Potential scale reduction 
factors (PSRFs) and effective sample 
size (ESS) for monitored parameters to 
evaluate autumn (a, c) and spring (b, d) 
HMSC model convergence for the best 
fitting Fprob models. For the PSRF values, 
the autumn model had 96.6%, and the 
spring model had 82.4% below 1.1 (red 
dashed line). The 0.95 quantiles for PSRF 
were 1.06 and 1.26 for autumn and 
spring, respectively. The ESS values of 
all parameters for both models are above 
400 (red dashed line).
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F I G U R E  A 2 Posterior predictive check for (a) abundance and 
(b) size forage fish aggregation models, showing the observed 
versus expected Chi-square discrepancy measures (Freeman–Tukey 
goodness-of-fit) and the calculated Bayesian p-values (bpv).
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F I G U R E  A 3 Residual species-to-species associations (i.e., species which co-occur more or less than expected based on species' niches) 
in the (a, b) autumn and (c, d) spring community models. Panels (a) and (c) are due to the temporal random effect, while panels (b) and (d) 
are due to the tow random effect. Orange and blue indicate species pairs with at least 0.95 posterior support for a positive or negative 
association, respectively. The intensity of color and size of the marker indicates the strength of the association (in units of correlation). 
Species codes are defined in Table 1.

 20457758, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10226, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Surface and subsurface oceanographic features drive forage fish distributions and aggregations: Implications for prey availability to top predators in the US Northeast Shelf ecosystem
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Study region
	2.2|Data description
	2.2.1|Bottom trawl surveys—­forage fish species/community data
	2.2.2|Aerial digital surveys—­forage fish aggregation data

	2.3|Environmental data
	2.4|Model description and evaluation
	2.4.1|Forage fish community models
	2.4.2|Forage fish aggregation models

	2.5|Model predictions
	2.5.1|Forage fish community models
	2.5.2|Forage fish aggregation models


	3|RESULTS
	3.1|Model performance
	3.1.1|Forage fish community models
	3.1.2|Forage fish aggregation models

	3.2|Environmental drivers
	3.3|Spatial and seasonal patterns
	3.4|Forage fish community types
	3.5|Species co-­occurrence

	4|DISCUSSION
	4.1|Spatiotemporal patterns in forage fish availability
	4.2|Joint species distribution models reveal forage fish community dynamics
	4.3|Oceanographic drivers of forage fishes
	4.3.1|Community distribution
	4.3.2|Aggregating behavior
	4.3.3|Contrasting drivers of distributions and aggregations

	4.4|Implications for ecosystem change
	4.5|Limitations and sources of bias

	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


